The effects of glucose-fructose co-ingestion on repeated performance during a day of intensified rugby union training in professional academy players.

Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK. Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK. Bath Rugby Union Club, Bath, UK.

Journal of sports sciences. 2021;(10):1144-1152
Full text from:

Abstract

This study assessed the effects of glucose-fructose co-ingestion during recovery from high-intensity rugby training on subsequent performance. Nine professional, senior academy Rugby Union players performed two trials in a double-blind, randomized, crossover design. Identical rugby training sessions were separated by a 3-hour recovery period, during which participants ingested protein (0.3 g×kg BM×h-1) and carbohydrate-containing (0.8 g×kg BM×h-1) recovery drinks, comprised of glucose polymers (GLUCOSE ONLY) or a glucose-fructose mixture (GLUCOSE+FRUCTOSE). Performance outcomes were determined from global positioning systems combined with accelerometry and heart rate monitoring. Mean speed during sessions 1 (am) and 2 (pm) of GLUCOSE ONLY was (mean±SD) 118±6 and 117±4 m×min-1, respectively. During GLUCOSE+FRUCTOSE, mean speed during session 1 and 2 was 117±4 and 116±5 m×min-1, respectively (time x trial interaction, p = 0.61). Blood lactate concentrations were higher throughout recovery in GLUCOSE+FRUCTOSE (mean ±SD: 1-h 3.2 ±2.0 mmol×L-1; 3-h 2.1 ±1.2 mmol×L-1) compared to GLUCOSE ONLY (1-h 2.0 ±1.0 mmol×L-1; 3-h 1.4 ±1.0 mmol×L-1; trial effect p = 0.05). Gastrointestinal discomfort low in both conditions. These data suggest glucose-fructose mixtures consumed as protein-carbohydrate recovery drinks following rugby training do not enhance subsequent performance compared to glucose-based recovery drinks.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata